聚丙烯酰胺水解(碱化)
1、聚丙烯酰胺作为净水助凝剂,必须充分搅拌溶解后才能投加使用。否则不能发挥其应有的高效助凝效果,还会造成投加系统堵塞、封闭滤池表面、破坏滤池效率、大大缩短滤池的反冲洗周期等不良后果。溶解时搅拌速度应控制在400~1000r/min,溶解搅拌时间1h左右为宜。低温季节水温低、难溶解,用热水可缩短溶解时间,但水温不能超过60℃。
2、聚丙烯酰胺作为净水助凝剂,要获得最佳助凝效果的用量幅度很小,其最佳投量是0.03~0.4mg/L。超出这个范围会不起作用或很容易起副作用。
3、投加点是决定聚丙烯酰胺助凝沉淀效果好坏的关键。最佳投加点是在净水生产絮凝反应全流程中的1/2~2/3。
4、为保证均匀混合,应使用最稀浓度。聚丙烯酰胺浓度为0.05%左右,既利于搅拌溶解又便于投加使用,而且助凝效果最佳。聚丙烯酰胺溶液不宜存放超过10d,也不能与铁器接触,溶解水温不能超过60℃。否则会使聚丙烯酰胺分子链断开而失去助凝效果,并造成净化出水中丙烯酰胺单体含量增加的不良后果。
5、聚丙烯酰胺经过水解(碱化)可提高助凝效果。水解时间要8h左右,最佳水解比是1∶0.01~1∶0.05。在实际生产中经常是应急使用,无充足的水解时间,可通过加大水解比来达到较好水解的目的。现配现用的水解比1∶0.2较为适合。
6、为使净化出水中丙烯酰胺单体含量不超过卫生标准的规定,必须采用高聚合度的聚丙烯酰胺作为饮用水的净水助凝剂,要求使用丙烯酰胺单体含量低于0.2%的产品。
7、对各种原水水质(包括超负荷35%左右),高效助凝剂聚丙烯酰胺均能发挥良好的助凝沉淀效果。如石湾水厂第三车间,其设计供水能力是15×104t/d。采用聚丙烯酰胺作为助凝剂,投加量0.05mg/L,在保证优质供水的前提下,全天供水量达到22.3×104t,超出设计供水能力的48.7%。
欲使聚丙烯酰胺充分发挥其架桥作用,必须创造能使其分子中酰胺基与水中悬浮粒子接触的良好条件。一般认为聚丙烯酰胺的最佳水解度为30为宜。
污泥要分类使用聚丙烯酰胺在用阳离子聚丙烯酰胺处理污泥前,首先要了解污泥的分类,才能确定污泥处理的方法:
自来水厂沉淀池或浓缩池排出的物化污泥处理。污泥分类:数中细粒度有机与无机混合污泥,可压缩性能和脱水性能一般。
生活污水厂二沉池排出的剩余活性污泥处理。污泥分类:属亲水性、微细粒度有机污泥,可压缩性能差,脱水性能差。
工业废水处理产生的经浓缩池排出的物化和生化混合污泥处理。
污泥分类:属中细粒度混合污泥,含纤维体的脱水性能较好,其余可压缩性能和脱水性能一般。工业废水处理产生的经浓缩池排出的物理法和化学法产生的物化细粒度污泥处理。
污泥分类:属细粒度无机污泥,可压缩性能和脱水性能一般。工业废水处理产生的物化沉淀粗粒度污泥处理。污泥分类:属粗粒度疏水性无机污泥,可压缩性能和脱水性能很好。
水处理剂聚丙烯酰胺絮凝剂(PAM)又称三号絮凝剂,是由丙烯酰胺单体聚合而成的有机高分子聚合物,无色无味、无臭、易溶于水,没有腐蚀性。聚丙烯酰胺在常温下比较稳定,高温、冰冻时易降解,并降低絮凝效果,故其贮存与配制投加时,温度应控制在2℃~5℃时,絮凝效果为佳,否则会降低使用效果。
聚丙烯酰胺的结构式中丙烯酰胺分子量为71.08,n值为2×104~9×104,故聚丙烯酰胺分子量一般为1.5×106~6×106,分为低、中、高和超高分子量。
聚丙烯酰胺产品按其纯度来分,有粉剂和胶体两种,粉剂产品为白色或微黄色颗粒或粉末,固含量一般在90%以上,胶体产品为无色或微黄色透胶体,固含量为8%~9%。
聚丙烯酰胺产品按其离子型来分,有阳离子型、阴离子型和非离子型、两性离子型聚丙烯酰胺四种。
导致聚丙烯酰胺溶液粘度和絮凝效能降低的因素
聚丙烯酰胺是一类重要的水溶性高分子聚合物,已广泛应用到工农业生产的各个领域和人们的日常生活中。由于具有良好的理化特性,一直被认为是安全、无毒和稳定的,所以有关其在自然界中的降解及其可能产生毒性的研究在很长一段时期内被忽视。事实上,聚丙烯酰胺在环境中的残留、迁移、降解对环境具有潜在危害性。目前,其应用范围和规模正呈现快速增长趋势,而其研究多集中在其合成和应用方面,对聚丙烯酰胺的降解尤其是生物降解研究极少。
首先要了解絮凝剂会在不良的条件下发生导致絮凝整体的性能下降的变化,这个就是人们常说的降解作用。它的具体表现为分子量下降、溶液粘度降低、絮凝性能变差甚至失效。可能产生这种作用的因素很多。就此而言,高分子量的PAM是相当“娇气”的物质。而且,PAM的分子量越高,越容易产生这些变化,对有关的因素就越敏感。必须十分重视这个问题,否则再好的絮凝剂也不能取得良好效果。
在现在的销售市场上的聚丙烯酰胺的产品有很多的品种他们都各自有各自的优势,但是有一个基本点是不会变的,聚丙烯酰胺产品的分子量很高,这个是他们作为良好絮凝性能的基础。同时也要意识到在现实中这种絮凝剂的大分子容易受到外界各种因素的影响而破坏,使它的各方面的性能大大下降。所以在使用絮凝剂和相关的配置过程必须认真防止出现这个问题。
上面介绍了聚丙烯酰胺的降解知识,现在来介绍一下关于聚丙烯酰胺的降解的因素的具体介绍。导致PAM溶液粘度和絮凝效能降低的主要因素有:
1、机械的作用:高速搅拌或在溶液中施加强烈的机械剪切,都会使大分子断裂。如将PAM溶液在离心泵内搅几秒钟,其分子量下降达75%。如用高速搅拌溶解或高速设备输送,都会明显降低它的分子量和絮凝性能。
2、铁锈和铁化合物:在PAM溶液中加入很微量(如2mg/l)的铁化合物(如fecl3),或微量的铁锈粉末,轻微搅拌使之分散,PAM溶液的粘度和絮凝性能便大幅度降低。将PAM溶液置于生锈的铁器中,4小时后粘度下降78%,絮凝效能大大降低。
3、高温的作用:PAM大分子对高温很敏感,如0.1%的PAM溶液在80℃下放4小时,分子量由2100万降至760万,在50℃下放置亦降至1690万;分子量为1050万的PAM,在80℃下放置4小时后分子量降到330万。如在30℃下,分子量下降很慢。若PAM原来的分子量很低,如370万,则受热的降解很少。
4、并存杂质的影响:PAM溶液中如有悬浮杂质会降低它的粘度。无机离子特别是高价离子也有很大影响。如一种PAM溶液的粘度为191厘泊,加入含na+100mg/l的nacl后,溶液粘度降至140,而加入含ca2+100mg/l的cacl2后,粘度降至30厘泊。
5、其他:紫外线照射会使PAM迅速降解,强烈照射4小时可使PAM的分子量由1800万下降到1000万,溶液中存有氧化剂亦加速降解
PAM的降解属于通过游离基的链式反应(free radical chain reaction),凡是能引发产生游离基的因素都会加速PAM的降解。氧和铁的反应能生成游离基,紫外线也是这样,都要注意避免。
PAM溶液的性能下降,部分是由于大分子形态的变化:由线形伸张的长链状变为收缩卷曲的球状。PAM分子中含有大量的负电基,它们互相排斥而使大分子呈伸展状态,分子较长并充分露出活性基团,善于起架桥联结作用,絮凝性能较好。但是如果 PAM 溶液中存有较多阳离子,它们在大分子负电基的周围形成双电层,就会减弱负电基之间的相斥力,使PAM大分子转变成卷曲状态。离子浓度越高,这种影响越大。双价离子如ca2+不但较强烈地被负电基吸附,而且可能使两个负电基桥联起来,更增强了大分子的卷缩。这既造成了溶液粘度下降(球状大分子的溶液粘度比线状分子低很多),而且也降低了PAM分子中羧基的有效活性,使絮凝性能明显下降。
净水剂产品广泛应用于工业用水、各种工业废水、城市污水、污泥脱水等的净化处理。我们的聚丙烯酰胺净水剂与其他无机絮凝剂相比具有以下特点:
1. 新型、优质、高效铁盐类有机高分子絮凝剂;
2. 混凝性能优良,矾花密实,沉降速度快;
3. 净水效果优良,水质好,不含铝、氯及重金属离子等有害物质,亦无铁离子的水相转移,无毒,无害,安全可靠。
4. 除浊、脱色、脱油、脱水、除菌、除臭、除藻、去除水中COD、BOD及重金属离子等功效显著。
5. 适应水体PH值范围宽为1-14,最佳PH值范围为5-10,净化后原水的PH值与总碱度变化幅度小,对处理设备腐蚀性小;
6. 对微污染、含藻类、低温低浊原水净化处理效果显著,对高浊度原水净化效果尤佳。
7. 投药量少,成本低廉,处理费用可节省20%-50%。