在工业生产中,数据一直贯穿在整个流程中。生产机床的转速、能耗,食品加工的温湿度,火力发电机组的燃烧和燃煤消耗,汽车的装备数据,物流车队的位置和速度等,都是在生产过程中的数据。
自从工业从社会生产中独立成为一个门类以来,工业大数据的采集、使用范围就逐步加大。从泰勒拿着秒表计算工人的用铁锹送煤到锅炉的时间开始,是对制造管理数据的采集和使用;福特汽车的流水化生产,是对汽车生产过程的工业数据的采集和工厂内使用;丰田的精益生产模式,将数据的采集和使用扩大到工厂和上下游供应链;核电站发电过程中全程自动化将生产过程数据的自动化水平提高到更高程度。
实际上,工业数据有三个特点。第一个特点是多模态。过去很简单地将数据分成结构化数据、半结构化数据、非结构化数据,但工业企业不是这样。非结构化数据的使用效率取决于结构化的程度,只有结构化才可以被高效利用;第二个特点是高通量,很多设备是不停机的,所有的数据是7*24小时连续产生的,量非常大;第三个特点是强关联,在工业的不同行业,数据关联遵循不同的规律而非简单的聚合。
中国相对于一些发达国家而言,我国在工业互联网方面还处于上升期。工业大数据本身的特点带来了非常多的挑战。除了数据获取的挑战,随之而来的就是数据分析、应用的挑战。通过工业化和信息化融合发展的方式,将工业化和信息化整体规划,并制定一系列的重点工程和推进计划。