资讯详情
当前位置:首页 > 行业新闻 > 资讯详情

工业大数据应用2个关键技术问题!

行业分类:机械化工 发布时间:2019-12-13 16:38

如今,工业大数据已经成为经济发展的重要推动因素,对工业大数据的合理应用有助于企业更快更好的实现专型升级,那么如何更好的利用工业大数据呢?要想更好的额利用工业大数据,首先需要了解工业大数据应用两个关键技术问题。

工业大数据应用2个关键技术问题!

1、数据建模的问题

产品数据建模是制造信息化的核心技术,也是工业大数据应用的核心。工业4.0实现了各个实体之间的相互连接,必然产生出对这些实体的大数据进行建模的问题。

首先要建设这些实体自身的数据模型,核心是产品模型,产品模型这是一个动态演变的全生命周期的模型,从需求一直到成品,再到转化为对客户的价值,包括产品需求、产品设计、产品工艺、产品加工、产品检验测试、产品维护等阶段的模型数据。

第二,产品与原料、设备、工人、生产线、客户、供应链之间相互关联,建立起更为全面的工业企业数据模型,这种关联比以往更为综合、复杂,既有静态结构关系关联,也有动态行为关联。

第三,所有实体数据模型,在静态模型的基础上,还需要采集这些实体的动态行为模型,产品行为分析、客户行为分析、设备行为分析、工厂行为分析等构成了工业大数据复杂的行为分析模型,使得工业大数据的洞察力更深刻也更复杂。

2、数据集成

在工业4.0的三种不同集成方式下,数据集成的模式也有不同的模型。工业4.0有三种境界的集成,也面临三种境界的数据共享。

1、是企业内的垂直集成,要实现垂直的各个环节的产品数据交换与共享。

2、是横向数据集成,各种上下游数据的交换与共享,包括客户、供应商、合作伙伴等数据。一般是互联网上XML文件传输。大数据技术的发展和应用,使得价值链上各环节数据和信息能够被深入分析和挖掘,为制造企业提供看待价值网络的全新视角。

3、是端到端的数据集成,生命周期的企业内外、制造、营销、消费、经济、产业、技术等大数据的交换与共享,真正的工业4.0大数据集成与分析。



免责声明:本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并立即删除内容。