近年来,随着企业数字化转型和工业智能化升级持续推进,企业中业务数据也开始快速增长,使得大数据分析以及BI商业智能等产品备受企业关注,无论是在会议室还是工厂车间。借助人工智能的精准快捷,以及人类本身的主观能动性和创造能力。
传统BI需要导入固定表样,由专业技术分析人员做分析,定期出报告,业务部门只能进行索取、下载和再分析。其次,传统BI表样复杂,并不存在自动化的数据关联,分析结果强调可视化效果展现。第三,传统BI使用关系型数据库,面对的是结构化数据,一般都是使用SQL语言查询,对较大的数据表分析,查询效率低且时间长。最后也是最关键一点,传统BI图表设计面向实施人员,都是业务人员向IT部门提出数据或分析需求,由技术人员实现,解决问题的时间可能很很长。
然而,面对快速变化的市场需求以及日趋激烈的竞争节奏,企业越来越多依赖对业务过程的数据分析来指导日常的经营生产。如果仍然按照传统BI的方式,向IT部门提出数据或分析需求,由技术人员实现,解决问题的时间可能延长到数周甚至数月,早就错过了最佳窗口期。对业务人员来说,分析需求不断增加也给IT技术人员带来了越来越多的业务处理压力。如果完全依赖于传统BI,分析所需的时间和流程越来越长,无法满足需求,对企业而言,必须在日趋庞大复杂的业务分析需要与快速响应业务分析之间找到一个新的平衡点。
除此之外,我们还必须考虑,在新的市场竞争中,如果根据数据分析结果进行可视化展现,而不去深究数据背后存在的问题以及造成的原因,并想办法解决它。对企业的数字化转型和工业智能化升级意义仍然不大。因此企业对BI的应用需求,还必须包括对数据结果背后问题原因的分析和探究,并基于此持续优化企业的管理和运营流程。