资讯详情
当前位置:首页 > 行业新闻 > 资讯详情

工业大数据面临的机遇和挑战

行业分类:业内资讯 发布时间:2019-10-30 08:49

工业互联网时代大数据人工智能云计算等产物。其中工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后、服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称,工业大数据以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。

工业大数据面临的机遇和挑战

工业大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。大数据曾经被认为是一项重大挑战。但是现在,它越来越被视为一种理想状态,尤其是在正在尝试并实施机器学习和其他人工智能学科的组织中。

工业大数据相比其他大数据来看,其结构化数据更多,相关性和实时性更强,也更易于分析。这是因为工业数据普遍是由自动化设备在生产过程中产生的,其环境和操作受到人为因素影响较小,不会产生太多不可控因素。

工业大数据的分析更侧重于关系挖掘和现象捕捉。一般来讲,工业大数据可以在现象中提取出的特征会涉及诸多的物理学科等问题,有效的分析将会比普通大数据涉及的知识领域更为宽泛,其分析困难程度可见。

目前工业大数据发展速度较快,应用范围广泛。但存在的问题和难关同样不容忽视。传统大数据中的数据挖掘,通常会以挖掘的数据数量来弥补数据质量存在的缺陷。可是工业大数据中,变量通常具有明确的物理意义,数据完整性对于分析系统至关重要,低质量的数据可能彻底改变两个变量间的关系,对于高精度的分析可能造成灾难性的影响。

所以工业大数据着重追求的是数据的精度。目前大数据的应用范围越来越广,对于精度和质量的要求同样会越来越高。




免责声明:本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并立即删除内容。